388 research outputs found

    Sign-reversal of drag in bilayer systems with in-plane periodic potential modulation

    Get PDF
    We develop a theory for describing frictional drag in bilayer systems with in-plane periodic potential modulations, and use it to investigate the drag between bilayer systems in which one of the layers is modulated in one direction. At low temperatures, as the density of carriers in the modulated layer is changed, we show that the transresistivity component in the direction of modulation can change its sign. We also give a physical explanation for this behavior.Comment: 4 pages, 4 figure

    Quintessence and variation of the fine structure constant in the CMBR

    Get PDF
    We study dependence of the CMB temperature anisotropy spectrum on the value of the fine structure constant α\alpha and the equation of state of the dark energy component of the total density of the universe. We find that bounds imposed on the variation of α\alpha from the analysis of currently available CMB data sets can be significantly relaxed if one also allows for a change in the equation of state.Comment: 5 pages, 3 figures. Several references added and a few minor typos corrected in the revised versio

    High-Order Coupled Cluster Method (CCM) Calculations for Quantum Magnets with Valence-Bond Ground States

    Get PDF
    In this article, we prove that exact representations of dimer and plaquette valence-bond ket ground states for quantum Heisenberg antiferromagnets may be formed via the usual coupled cluster method (CCM) from independent-spin product (e.g. N\'eel) model states. We show that we are able to provide good results for both the ground-state energy and the sublattice magnetization for dimer and plaquette valence-bond phases within the CCM. As a first example, we investigate the spin-half J1J_1--J2J_2 model for the linear chain, and we show that we are able to reproduce exactly the dimerized ground (ket) state at J2/J1=0.5J_2/J_1=0.5. The dimerized phase is stable over a range of values for J2/J1J_2/J_1 around 0.5. We present evidence of symmetry breaking by considering the ket- and bra-state correlation coefficients as a function of J2/J1J_2/J_1. We then consider the Shastry-Sutherland model and demonstrate that the CCM can span the correct ground states in both the N\'eel and the dimerized phases. Finally, we consider a spin-half system with nearest-neighbor bonds for an underlying lattice corresponding to the magnetic material CaV4_4O9_9 (CAVO). We show that we are able to provide excellent results for the ground-state energy in each of the plaquette-ordered, N\'eel-ordered, and dimerized regimes of this model. The exact plaquette and dimer ground states are reproduced by the CCM ket state in their relevant limits.Comment: 34 pages, 13 figures, 2 table

    The COMPASS Experiment at CERN

    Get PDF
    The COMPASS experiment makes use of the CERN SPS high-intensitymuon and hadron beams for the investigation of the nucleon spin structure and the spectroscopy of hadrons. One or more outgoing particles are detected in coincidence with the incoming muon or hadron. A large polarized target inside a superconducting solenoid is used for the measurements with the muon beam. Outgoing particles are detected by a two-stage, large angle and large momentum range spectrometer. The setup is built using several types of tracking detectors, according to the expected incident rate, required space resolution and the solid angle to be covered. Particle identification is achieved using a RICH counter and both hadron and electromagnetic calorimeters. The setup has been successfully operated from 2002 onwards using a muon beam. Data with a hadron beam were also collected in 2004. This article describes the main features and performances of the spectrometer in 2004; a short summary of the 2006 upgrade is also given.Comment: 84 papes, 74 figure

    About Bianchi I with VSL

    Full text link
    In this paper we study how to attack, through different techniques, a perfect fluid Bianchi I model with variable G,c and Lambda, but taking into account the effects of a cc-variable into the curvature tensor. We study the model under the assumption,div(T)=0. These tactics are: Lie groups method (LM), imposing a particular symmetry, self-similarity (SS), matter collineations (MC) and kinematical self-similarity (KSS). We compare both tactics since they are quite similar (symmetry principles). We arrive to the conclusion that the LM is too restrictive and brings us to get only the flat FRW solution. The SS, MC and KSS approaches bring us to obtain all the quantities depending on \int c(t)dt. Therefore, in order to study their behavior we impose some physical restrictions like for example the condition q<0 (accelerating universe). In this way we find that cc is a growing time function and Lambda is a decreasing time function whose sing depends on the equation of state, w, while the exponents of the scale factor must satisfy the conditions i=13αi=1\sum_{i=1}^{3}\alpha_{i}=1 and i=13αi2<1,\sum_{i=1}^{3}\alpha_{i}^{2}<1, ω\forall\omega, i.e. for all equation of state,, relaxing in this way the Kasner conditions. The behavior of GG depends on two parameters, the equation of state ω\omega and ϵ,\epsilon, a parameter that controls the behavior of c(t),c(t), therefore GG may be growing or decreasing.We also show that through the Lie method, there is no difference between to study the field equations under the assumption of a cc-var affecting to the curvature tensor which the other one where it is not considered such effects.Nevertheless, it is essential to consider such effects in the cases studied under the SS, MC, and KSS hypotheses.Comment: 29 pages, Revtex4, Accepted for publication in Astrophysics & Space Scienc

    Quantum magnetism in two dimensions: From semi-classical N\'eel order to magnetic disorder

    Full text link
    This is a review of ground-state features of the s=1/2 Heisenberg antiferromagnet on two-dimensional lattices. A central issue is the interplay of lattice topology (e.g. coordination number, non-equivalent nearest-neighbor bonds, geometric frustration) and quantum fluctuations and their impact on possible long-range order. This article presents a unified summary of all 11 two-dimensional uniform Archimedean lattices which include e.g. the square, triangular and kagome lattice. We find that the ground state of the spin-1/2 Heisenberg antiferromagnet is likely to be semi-classically ordered in most cases. However, the interplay of geometric frustration and quantum fluctuations gives rise to a quantum paramagnetic ground state without semi-classical long-range order on two lattices which are precisely those among the 11 uniform Archimedean lattices with a highly degenerate ground state in the classical limit. The first one is the famous kagome lattice where many low-lying singlet excitations are known to arise in the spin gap. The second lattice is called star lattice and has a clear gap to all excitations. Modification of certain bonds leads to quantum phase transitions which are also discussed briefly. Furthermore, we discuss the magnetization process of the Heisenberg antiferromagnet on the 11 Archimedean lattices, focusing on anomalies like plateaus and a magnetization jump just below the saturation field. As an illustration we discuss the two-dimensional Shastry-Sutherland model which is used to describe SrCu2(BO3)2.Comment: This is now the complete 72-page preprint version of the 2004 review article. This version corrects two further typographic errors (three total with respect to the published version), see page 2 for detail

    Topological Defects and CMB anisotropies : Are the predictions reliable ?

    Get PDF
    We consider a network of topological defects which can partly decay into neutrinos, photons, baryons, or Cold Dark Matter. We find that the degree-scale amplitude of the cosmic microwave background (CMB) anisotropies as well as the shape of the matter power spectrum can be considerably modified when such a decay is taken into account. We conclude that present predictions concerning structure formation by defects might be unreliable.Comment: 14 pages, accepted for publication in PR

    Bayesian joint estimation of non-Gaussianity and the power spectrum

    Get PDF
    We propose a rigorous, non-perturbative, Bayesian framework which enables one jointly to test Gaussianity and estimate the power spectrum of CMB anisotropies. It makes use of the Hilbert space of an harmonic oscillator to set up an exact likelihood function, dependent on the power spectrum and on a set of parameters αi\alpha_i, which are zero for Gaussian processes. The latter can be expressed as series of cumulants; indeed they perturbatively reduce to cumulants. However they have the advantage that their variation is essentially unconstrained. Any truncation(i.e.: finite set of αi\alpha_i) therefore still produces a proper distribution - something which cannot be said of the only other such tool on offer, the Edgeworth expansion. We apply our method to Very Small Array (VSA) simulations based on signal Gaussianity, showing that our algorithm is indeed not biased.Comment: 11pages, 4 figures, submitted to MNRA

    A new measurement of the Collins and Sivers asymmetries on a transversely polarised deuteron target

    Get PDF
    New high precision measurements of the Collins and Sivers asymmetries of charged hadrons produced in deep-inelastic scattering of muons on a transversely polarised 6LiD target are presented. The data were taken in 2003 and 2004 with the COMPASS spectrometer using the muon beam of the CERN SPS at 160 GeV/c. Both the Collins and Sivers asymmetries turn out to be compatible with zero, within the present statistical errors, which are more than a factor of 2 smaller than those of the published COMPASS results from the 2002 data. The final results from the 2002, 2003 and 2004 runs are compared with naive expectations and with existing model calculations.Comment: 40 pages, 28 figure
    corecore